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Why is SOL turbulence important?

• Plasma properties in the tokamak edge/
scrape-off layer (SOL) constrain component 
lifetime and reactor performance


• Heat exhausted in SOL could damage 
divertor plates if heat flux width is too 
narrow

• Can SOL turbulence broaden the heat flux 

width?


• Can electromagnetic effects be important for 
SOL turbulence? 
 
 
 



Modeling the edge/SOL is challenging
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• Gyrokinetic (GK) theory and simulation are important first-principles 
tools for studying turbulence and transport in fusion plasmas, but 
most present codes optimized for core, small fluctuations (delta-f)


• Edge/SOL more challenging: large-amplitude fluctuations, open 
field lines, plasma-wall interactions, X-point geometry, atomic 
physics, transition from kinetic to fluid regimes  need specialized 
full-f GK codes


• Including electromagnetic effects (allowing magnetic field to 
fluctuate) also challenging  all GK SOL results to-date have been 
electrostatic (no magnetic fluctuations)


• Several GK codes making great progress in edge/SOL


• XGC1, COGENT, ELMFIRE, GENE, Gkeyll, etc


• Essential to have several independent codes to attack from different 
perspective and cross-check on difficult turbulence problems!

→

→



Methods for solving gyrokinetic system
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Methods for solving gyrokinetic system

• Sample phase space with ensemble of 
 ‘superparticles’


• Fields on 3D grid, particles move 
through grid


• Historically, EM fluctuations challenging 
in GK PIC codes due to numerical 
“Ampere cancellation” problem

• Codes like ORB5 and XGC1 have made 

good recent progress to mitigate issue

Np
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• Discretize distribution function 
 on 5D phase space grid


• Can solve with standard PDE methods, 
e.g. spectral, finite volume, 
discontinuous Galerkin, etc. 


• Continuum electromagnetic GK codes 
have mostly avoided the Ampere 
cancellation problem

f(x, y, z, v∥, μ)

Barnes et al, 2010

Particle-in-cell (Lagrangian) Continuum (Eulerian)



Methods for solving gyrokinetic system
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Continuum (Eulerian)


• Discretize distribution function 
 on 5D phase space grid


• Can solve with standard PDE methods, 
e.g. spectral, finite volume, 
discontinuous Galerkin, etc. 


• Continuum electromagnetic GK codes 
have mostly avoided the Ampere 
cancellation problem

f(x, y, z, v∥, μ)

• First successful continuum GK 
code on open field lines


• First electromagnetic GK on 
open field lines

https://github.com/ammarhakim/gkyl/


https://gkeyll.readthedocs.io



Full-  electromagnetic gyrokineticsf
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EMGK equation, fs = fs(R, vk, µ; t)

@fs

@t
+ Ṙ ·rfs + v̇k

@fs

@vk
= C[fs] + Ss

with nonlinear phase-space trajectories

Ṙ = {R, Hs} =
B⇤

0 + �B?

B
⇤
k

vk +
b̂

qsB
⇤
k
⇥ (µrB + qsr�)

v̇k = {vk, Hs}�
qs

ms

@Ak

@t
= �

B⇤
0 + �B?

msB
⇤
k

· (µrB + qsr�)� qs

ms

@Ak

@t

where B⇤
0 = B0 + (msvk/qs)r⇥ b̂ and �B? = rAk ⇥ b̂.

• No assumption of scale separation between background and fluctuations


• Taking long-wavelength (drift-kinetic) limit, neglecting gyroaveraging for now


• Using symplectic ( ) formulation of EMGK, so        appears explicitly 
v∥
∂A∥

∂t
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Full-  electromagnetic gyrokineticsf
Quasineutrality equation (long-wavelength):

�r ·
X

s

msn0s

B2
r?� =

X

s

qs

Z
d3v fs (1)

Parallel Ampère equation:

�r2
?Ak = µ0

X

s

qs

Z
d3v vkfs (2)

Can take
@
@t to get an exact Ohm’s law:

�r2
?
@Ak

@t
= µ0

X

s

qs

Z
d3v vk

@fs
@t

(3)

Writing GK eq. as

@fs
@t

=
@fs
@t

?

+
qs
ms

@Ak

@t

@fs
@vk

, (4)

where
@fs
@t

?
denotes all the terms in the gyrokinetic equation except the

@Ak
@t

term, can write Ohm’s law as

 
�r2

? +

X

s

µ0q2s
ms

Z
d3v fs

!
@Ak

@t
= µ0

X

s

qs

Z
d3v vk

@fs
@t

?

(5)



Ampère cancellation problem
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• In pk formulation, Ampère’s law:

 
�r2

? + Cn

X

s

µ0qs
ms

Z
d3p f

!
Ak = Cj µ0

X

s

qs
m2

s

Z
d3p pkf

• “Cancellation problem” arises when there are small errors in the calcula-

tion of the integrals, represented by Cn and Cj (which should be exactly

1 in the exact system)

• Recall vk formulation Ohm’s law... same problem...

 
�r2

? + Cn

X

s

µ0q2s
ms

Z
d3v fs

!
@Ak

@t
= Cj µ0

X

s

qs

Z
d3v vk

@fs
@t

?

• The simplest Alfvén wave dispersion relation (slab geometry, uniform

Maxwellian background with stationary ions) becomes (with �̂ ⌘ �e

2
mi
me

)

!2
=

k2kv
2
A

Cn + k2?⇢
2
s
/�̂

"
1 + (Cn � Cj)

�̂

k2?⇢
2
s

#

• This reduces to the correct result if integrals calculated consistently, so

that Cn = Cj , but if not there will be errors ⇠ !H for modes with

�̂/k2?⇢
2
s
� 1.

Gkeyll’s DG scheme computes integrals consistently so that errors cancel exactly

(appendix of Mandell et al, JPP 2020 shows numerical dispersion relation calculation)



Linear benchmark: kinetic Alfvén wave 

     results match theory very well, even for case with 
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No cancellation problem!

̂β
k2

⊥ρ2
s

=
βe /2
k2

⊥ρ2
s

mi

me
= 105

• In pk formulation, Ampère’s law:
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• “Cancellation problem” arises when there are small errors in the calcula-

tion of the integrals, represented by Cn and Cj (which should be exactly
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• Recall vk formulation Ohm’s law... same problem...
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• The simplest Alfvén wave dispersion relation (slab geometry, uniform

Maxwellian background with stationary ions) becomes (with �̂ ⌘ �e
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• This reduces to the correct result if integrals calculated consistently, so

that Cn = Cj , but if not there will be errors ⇠ !H for modes with

�̂/k2?⇢
2
s
� 1.

(k⊥ρs ≪ 1)
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Modeling the NSTX SOL with
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• Open-field-line region only

Modeling the NSTX SOL with
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• Open-field-line region only

• Simplified helical geometry 
with vertical flux surfaces, 
const curvature and no shear 
(no X point) 

≈

Modeling the NSTX SOL with
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• Open-field-line region only

• Simplified helical geometry 
with vertical flux surfaces, 
const curvature and no shear 
(no X point) 

• Model flux of heat and 
particles across separatrix 
with source

• Boundary conditions: 


• perfectly conducting walls 
( ) in radial 
direction, x 


• periodic in binormal 
direction, y 


• conducting sheath model 
BC along field line, z

ϕ = A∥ = 0

≈

50ρs ∼ 15 cm

Le
ng

th
 a

lo
ng

 
 (m

)
⃗

B
0

Modeling the NSTX SOL with



Conducting-sheath boundary condition 

• Need to model non-neutral sheath using BCs (GK assumes quasi-neutrality, cannot 
resolve sheath)


• Sheath potential should reflect low energy electrons


• Solve Poisson equation on  boundary to get , then use 
 to reflect electrons with  

 

• Potential self-consistently relaxes to ambipolar-parallel-outflow state, and allows 
local currents in and out of wall (unlike “logical” sheath model)

z ϕsh(x, y) ≐ ϕ(z = zsh)
Δϕ = ϕsh − ϕw mv2

∥ /2 < |e |Δϕ
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�r? ·
X

s

msn0s

B2
r?�(z = zsh) =

X

s

qs

Z
d3v fs(z = zsh)

E. Shi



Sheath boundary condition for electrons

(a) Outgoing electrons with  are lost 
into the wall 


(b) Rest of outgoing electrons  are reflected back 
into plasma

v∥ > vcut = 2eΔϕ/m

0 < v∥ < vcut

12

Ions: Assuming positive sheath potential (relative to wall), all ions are lost

E. Shi
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Modeling the NSTX SOL with

≈

• Simple helical model of NSTX SOL

• Field-aligned simulation domain that follows field lines from bottom 

divertor plate, around the torus, to the top divertor plate


• Length along field line ~ connection length  m (constant, no shear 
for now)


• All bad curvature  interchange instability, blob dynamics


• Real deuterium mass ratio, Lenard-Bernstein collisions

L∥ = 8

→

Carralero et al, 2015

/Blob
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S. Zweben, NSTX GPI

⃗B 0
x

y

NSTX GPI        vs

Source region

Quasi-separatrix

Ion density at midplaneD  signal  density at midplaneα ∼

Separatrix
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Straighten out flux- 
tube domain

(length along )⃗B 0

y

z

x

y
z

x

Lz = 8 m

Demonstrating           ’s EMGK capabilities: 
tracing magnetic field lines
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(length along )⃗B 0
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Demonstrating           ’s EMGK capabilities: 
tracing fluctuating magnetic field lines
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⃗B 0 + δ ⃗B ⊥
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Demonstrating           ’s EMGK capabilities: 
tracing fluctuating magnetic field lines
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⃗B 0 + δ ⃗B ⊥

Project on x-z plane
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dancing field lines
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Blobs ( ) bend/stretch magnetic field linesβ ∼ 1 % 17
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First EMGK simulations of SOL



• We’ve used simple helical geometry and parameters from NSTX 
H-mode SOL, but with 10x  to stress-test EM effects (could 
happen locally in ELM?)


• Results in magnetic fluctuations 


•             can handle this strong magnetic turbulence robustly


• Mandell et al, JPP 2020; Hakim et al, PoP 2020 
 

n0

δB⊥/B0 ∼ 1 %

18

First EMGK simulations of SOL



Do EM fluctuations affect SOL 
turbulence dynamics?

• We’ve used simple helical geometry and parameters from NSTX 
H-mode SOL, but with 10x  to stress-test EM effects (could 
happen locally in ELM?)


• Results in magnetic fluctuations 


•             can handle this strong magnetic turbulence robustly


• Mandell et al, JPP 2020; Hakim et al, PoP 2020 
 

n0

δB⊥/B0 ∼ 1 %

• Now going to do side-by-side comparison of electrostatic and 
electromagnetic cases. Things to look for:

• Changes in the blob structures, dynamics, frequency, etc

18

First EMGK simulations of SOL



Electrostatic/electromagnetic comparison: 
midplane ion density
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Electrostatic/electromagnetic comparison: 
midplane ion density
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⃗B 0 = B0 ̂z
x

y



EM has larger, more intermittent density fluctuations
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Electrostatic/electromagnetic comparison: 
density fluctuations statistics



• Might expect larger density fluctuations means more 
transport, but…

21

Radial particle transport reduced in EM case by ~ 40%

Electrostatic/electromagnetic comparison: 
radial particle flux (near midplane)



The radial  particle flux is defined as


In this case, using  as a surrogate 
diagnostic for transport is not sufficient! 

E × B

nrms

22

co
sαΓr = ⟨ñeṽr⟩ = ne, rmsvr, rms cos α

Electrostatic/electromagnetic comparison: 
radial particle flux (near midplane)



• Because EM case has less radial transport, heat flux to 
divertor is more peaked in EM case


• ES case over-predicts transport, over-predicts heat flux width

23

⇒

Electrostatic/electromagnetic comparison: 
divertor heat flux profile



Modest simulation cost (even for EM!)

24

  (Nx, Ny, Nz, Nv, Nm) 
~(32, 64, 20, 20, 10) Electrostatic Electromagnetic
Total wall-clock time


(128 cores) 2.7 days 3.4 days
Time/timestep 


(wall-clock) 0.41 s 0.68 s

⃗B 0 = B0 ̂z
x

y

only ~25%  
more

Total simulation time = 

1 ms  ion transit times∼ 20
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Towards more realistic SOL geometry

• We know magnetic shear can be important in SOL, especially near X point


• All Gkeyll results to date (NSTX and Helimak) have used simplified helical geometry 

• Neglected most geometrical factors, no magnetic shear


• Even in SMT configuration (e.g. Helimak) with const vertical field, there should be some 
magnetic shear because toroidal field  
 

        


• Keeping helical configuration, can adjust shear by making , so that 
 
 

• Take field-aligned helical coordinate system with 
 
 
 
 
 

∼ 1/R

B =
B0R0

R
φ̂ + BvẐ, q(R) =

HBφ

2πRBv
=

B0R0H
2πR2Bv

, ̂s =
R
q

dq
dR

= − 2

Bv = Bv(R) = Bv0(R /x0)n

25

̂s = − 2 −
R
Bv

dBv

dR
= − 2 − n

x = R, z = Z, y = x0 (φ −
2πqZ

H ),

B =
RBv

x0
∇x × ∇y
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Helical geometry with magnetic shear

R

Lc /2

Ψ(R, Z) = R2Bv /2 ∼ R− ̂s
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̂s = − 2 ̂s = − 5 ̂s = − 10
Z Z Z

R R R

NSTX SOL 

connection length


Boedo et al, PoP 2014

Lc =
HB
Bv

≈
HB0R0

BvR
∼

1
Rn+1

∼
1

R− ̂s−1Connection length:

Vertical (~poloidal) flux:



• Transport decreases as  increases


• EM cases again have less transport


• This is at ~ experimental  (no more 10x)

| ̂s |

β ∼ 0.1 %

27

 scan: radial particle flux (near midplane)̂s



• Heat flux profile gets narrower as  increases


• EM effects more important as  increases

| ̂s |

| ̂s |

28

 scan: divertor heat flux profileŝs



Summary
•             is being used to study SOL turbulence in tokamaks like NSTX (only handles open 

field lines right now)


•     has produced the first nonlinear electromagnetic gyrokinetic simulations in the SOL, 
can handle strong magnetic turbulence with 


• In high  regime, including electromagnetic fluctuations results in larger, more intermittent 
fluctuations in SOL but less transport


• Moving towards more realistic SOL geometry, including magnetic shear

δB⊥/B0 ∼ 1 %

β

29
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https://github.com/ammarhakim/gkyl/


https://gkeyll.readthedocs.io
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Back-up slides
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But increasing connection length, adding magnetic shear can also 
increase magnetic fluctuations and affect transport

Dancing field lines at ~ experimental β
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•  in SOL region (  NSTX SOL )


• Profiles are steeper in source region, shallower in SOL 
region in EM case

βe ∼ 0.5 % , βi ∼ 1 % ∼ 10 ×

Electrostatic/electromagnetic comparison: 
midplane profiles



•   (~ NSTX SOL)


• Profiles drop off more quickly as  increases 


• Previous simulations with simplified geometry similar to  case

β ∼ 0.1 %

| ̂s |

̂s = − 2

35

 scan: midplane profiles (EM)̂s



Current/Future Work

• Generalizing the magnetic geometry to 
include magnetic shear, non-constant 
curvature, closed field line regions, X-point

• Non-orthogonal field-aligned coordinate system 

with magnetic shear now implemented


• X-point is a singularity in these coordinates, 
challenging!


• More studies of EM effects on blobs/ELMs

• Comparisons with magnetic fluctuation 

measurements in experiments?
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Imaging the SOL with GPI

37

• GPI = Gas-puff imaging 
diagnostic (S. Zweben)


• Real-time turbulence movies 
in NSTX SOL


• Data taken using fast camera 
(400,000 fr/s)


• D  intensity proportional to 
some combination of  and 

α
n T
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Linear benchmark: KBM instability (local limit)
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k?⇢s = 0.5, kkLn = 0.1, R/Ln = 5, R/LTi = 12.5, R/LTe = 10, ⌧ = 1


